
1 Alternate definitions of a ridge

Below, we give two alternative, but similar, definitions of a ridge, the first being
the more convenient and somewhat simpler definition of a second-derivative
ridge, which was presented in the tutorial as the definition of a ridge. The
second is a curvature ridge; key concepts in this geometric definition are that
of principal curvatures and principal directions [?].

As an aside, curvature ridge definition given below is somewhat restrictive in
the sense that it is assumed that the surface of interest represents the graph of
a function and hence the ridge is defined in the domain of the graph, instead
of on the surface itself. However the definition can easily be generalized for an
arbitrary orientable surface.

Definition 1.1 A second-derivative ridge of σ is an injective curve c :
s 7→ D, where s ∈ (a, b) ⊂ R, satisfying the following conditions for each s in
the open interval (a, b):

SR1. The vectors c′(s) and ∇σ(c(s)) are parallel.
SR2. Σ(n,n) = min‖u‖=1 Σ(u,u) < 0, where n is a unit normal vector to
the curve c(s) and Σ is thought of as a bilinear form evaluated at the point
c(s).

Definition 1.2 Let G ⊂ R
3 denote the graph of σ : D ⊂ R

2 7→ R. Let
π : G → D be the standard projection map, with its associate tangent map
Tπ. A curvature ridge of the graph G is an injective curve c : s 7→ D,
where s ∈ (a, b) ⊂ R, satisfying the following conditions for each s in the open
interval (a, b):

CR1. The vectors c′(s) = dc
ds

and ∇σ(c(s)) are parallel .
CR2. Regard G as an orientated surface in R

3. Let p = c(s) and G ∋
p̃ = π−1(p). Let ku

p̃ and kl
p̃ denote the maximum and minimum principal

curvatures of G at the point p̃ with corresponding unit principal vectors ũu
p̃

and ũl
p̃. We require that kl

p̃ < 0 and that Tπ(ũl
p̃) be normal to c′(s).

The main difference between the two definitions is this: in CR2 the curvature
is measured with respect to the tangent plane to the graph of σ at each point,
whereas in SR2, the curvature is always with respect to the xy-plane. That is,
in the first definition, the downward direction is fixed and points toward the
xy-plane 1 , whereas in the second definition, the downward direction is always
parallel to the normal vector field of the graph. The first definition is more
intrinsic, whereas the second is more intuitive. As expected, one can prove the
two measures are equal at local extremum points, at which the two planes are

1 We assume D ⊂ xy-plane.
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parallel. In the next section, we show that a second-derivative ridge is always
a subset of a curvature ridge.

2 Equivalence Between Ridge Definitions

The relationships between the curvature measures used in the two previous
definitions can be summarized as follows:

Theorem 2.1 For each point p ∈ D, let t be a vector of arbitrary length
oriented along ∇σ and n be a vector of arbitrary length oriented orthogonal to
t (if ∇σ = 0, t can be arbitrarily oriented). Let γn = Σ(n,n) and γt = Σ(t, t).
As before, let t̃ = (Tπ)−1t and ñ = (Tπ)−1n. Then we have the following
relations:

γn = κ k(ñ)

γt = κ3 k(t̃)

where κ =

√

1 +
(

∂σ
∂x

)2
+
(

∂σ
∂y

)2
.

PROOF. Let the DLE field be given by the function σ(x, y) and G denote
the graph z = σ(x, y). The unit normal field to G is given by

u =
1

κ

(

−
∂σ

∂x
,−

∂σ

∂y
, 1

)

. (1)

By definition [?], the normal curvature in the direction ñ is given by

k(ñ) = ñ · ∇ñu (2)

where ∇ñu is the covariant derivative of u with respect to ñ.

Using this formula for an arbitrary vector w = (wx, wy, wz), the curvature
along w is given by

k(w) = 1
κ

(

w2
x

∂2σ
∂x2 + 2wxwy

∂2σ
∂x∂y

+ w2
y

∂2σ
∂y2

)

− 1
κ3

(

∂σ
∂x

(

∂σ
∂x

∂2σ
∂x∂y

+ ∂σ
∂y

∂2σ
∂y2

)

+ ∂σ
∂y

(

∂σ
∂y

∂2σ
∂x∂y

+ ∂σ
∂x

∂2σ
∂x2

))

wxwy

− 1
κ3

(

∂σ
∂x

(

∂σ
∂y

∂2σ
∂x∂y

+ ∂σ
∂x

∂2σ
∂x2

)

w2
x + ∂σ

∂y

(

∂σ
∂x

∂2σ
∂x∂y

+ ∂σ
∂y

∂2σ
∂y2

)

w2
y

)

(3)
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Plugging in ñ for w in Eq. (3) and using the fact that

∇σ · n = 0 , (4)

we get

k(ñ) =
1

κ

(

n2
x

∂2σ

∂x2
+ 2nxny

∂2σ

∂x∂y
+ n2

y

∂2σ

∂y2

)

(5)

=
1

κ
Σ (n,n) . (6)

Now let t̃ = u × ñ. As above, define

k(t̃) = t̃ · ∇t̃u. (7)

If k(t̃) is expanded out and reduced, some algebra shows that

k(t̃) =
1

κ3

(

t2x
∂2σ

∂x2
+ 2txty

∂2σ

∂x∂y
+ t2y

∂2σ

∂y2

)

(8)

=
1

κ3
Σ (t, t) . (9)

2

Notice that κ ≥ 1. Therefore, equality of the two curvature measures holds
when κ = 1 ⇒ ∇σ = 0 (i.e. the tangent plane of G is parallel to the xy-plane).

Theorem 2.2 A second derivative ridge is always identical to or a subset of
a curvature ridge.

PROOF. We must show that all points along a second-derivative ridge satisfy
the conditions of a curvature ridge. Notice that CR1 is trivially satisfied if
SR1 is true. Hence we must show CR2, that is, k(ñ) is a minimum and less
than zero, where ñ is the lift of n, and n satisfies SR2, i.e.

Σ(n,n) = min
‖u‖=1

Σ(u,u) < 0 (10)

with n orthogonal to ∇σ.

From Theorem 2.1, k(ñ) is necessarily less than zero if Eq. (10) is satisfied.
Thus, it is left to show that k(ñ) is minimized in the (lifted) direction or-
thogonal to the second-derivative ridge. It should be clear that the scaling
introduced in Theorem 2.1 will not affect the difference in ridge definitions for
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all points in which Σ has a non-negative eigenvalue. Therefore, assume that
the eigenvalues of Σ satisfy λmin < λmax < 0. Without loss of generality we
can assume the second-derivative ridge is locally aligned with the x-axis, i.e.
that ∂σ

∂y
= 0. This, along with Eq. (10), puts Σ in canonical form

Σ =







λmax 0

0 λmin





 . (11)

Using this relation in Eq. (3) gives

k(û) =
1

κ

(

u2
xλmax + u2

yλmin

)

−
1

κ3

(

|∇σ|2 λmaxu
2
x

)

(12)

for an arbitrary unit vector û = (ux, uy, 0). Notice that both terms in Eq. (12)
are positive, hence k(û) is minimized if û is in the y-direction (i.e. û =
(0, 1, 0)), which is the direction orthogonal to the second-derivative ridge. 2

3 Example

Here we present an example to demonstrate the notions of a curvature ridge
and a second derivative ridge. Panels (a) and (b) of Fig. 3 show the graph
of an analytical test field σ. It seems intuitive to call the line y = 0 a ridge
except along the “valley” of the graph, centered around the point (2, 0) in the
domain.

It is easily verified that CR1, and hence SR1, is satisfied for the line y = 0.
The principal curvatures and second-derivative values given in CR2 and SR2

are plotted in Panel (c) of Fig. 3. Panel (d) of Fig. 3 shows a close-up around
the value x = 1.2. Notice that SR2 is satisfied for all x less than x ≈ 1.195
(i.e. up to the 2nd-derivative curvature intersection point shown in Panel (d))
whereas CR2 is satisfied for all x less than x ≈ 1.2 (i.e. up to the principal
curvature intersection point shown on Panel (d) of Fig. 3). Therefore we see
that the second-derivative ridge is a subset of the curvature ridge, which is of
course in agreement with Theorem 2.2. In addition, this example shows how
the two measures produce near identical results in this case.

The functional form for σ in this example was chosen to produce an interesting
test-case. For actual FTLE fields, σ typically does not vary much along the
ridges of the field—in fact, much less than shown in this example. Therefore
we can expect the difference between the two measures to be identically zero or
non-existent for all practical purposes. For autonomous systems, σ is constant
along a ridge, hence the two definitions of ridge are always identical for such
systems.
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Fig. 1. Comparison between ridge definitions. Notice that the second-derivative ridge
is slightly shorter than the curvature ridge
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